BMP signalling differentially regulates distinct haematopoietic stem cell types

نویسندگان

  • Mihaela Crisan
  • Parham Solaimani Kartalaei
  • Chris S Vink
  • Tomoko Yamada-Inagawa
  • Karine Bollerot
  • Wilfred van IJcken
  • Reinier van der Linden
  • Susana M Chuva de Sousa Lopes
  • Rui Monteiro
  • Christine Mummery
  • Elaine Dzierzak
چکیده

Adult haematopoiesis is the outcome of distinct haematopoietic stem cell (HSC) subtypes with self-renewable repopulating ability, but with different haematopoietic cell lineage outputs. The molecular basis for this heterogeneity is largely unknown. BMP signalling regulates HSCs as they are first generated in the aorta-gonad-mesonephros region, but at later developmental stages, its role in HSCs is controversial. Here we show that HSCs in murine fetal liver and the bone marrow are of two types that can be prospectively isolated--BMP activated and non-BMP activated. Clonal transplantation demonstrates that they have distinct haematopoietic lineage outputs. Moreover, the two HSC types differ in intrinsic genetic programs, thus supporting a role for the BMP signalling axis in the regulation of HSC heterogeneity and lineage output. Our findings provide insight into the molecular control mechanisms that define HSC types and have important implications for reprogramming cells to HSC fate and treatments targeting distinct HSC types.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FGF signalling restricts haematopoietic stem cell specification via modulation of the BMP pathway.

Haematopoietic stem cells (HSCs) are produced during embryogenesis from the floor of the dorsal aorta. The localization of HSCs is dependent on the presence of instructive signals on the ventral side of the vessel. The nature of the extrinsic molecular signals that control the aortic haematopoietic niche is currently poorly understood. Here we demonstrate a novel requirement for FGF signalling ...

متن کامل

Adult and embryonic blood and endothelium derive from distinct precursor populations which are differentially programmed by BMP in Xenopus.

Blood and blood vessels develop in close association in vertebrate embryos and loss-of-function mutations suggest common genetic regulation. By the criteria of co-expression of blood and endothelial genes, and lineage tracing of progeny, we locate two distinct populations of progenitors for blood and endothelial cells in developing Xenopus embryos. The first population is located immediately po...

متن کامل

Bone morphogenetic protein 4 modulates c-Kit expression and differentiation potential in murine embryonic aorta-gonad-mesonephros haematopoiesis in vitro

The transforming growth factor-beta-related factor bone morphogenetic protein 4 (BMP4) is expressed in the human embryonic aorta-gonad-mesonephros (AGM) coincident with the emergence of haematopoietic cells and influences postnatal mammalian haematopoietic stem cells in vitro. To investigate the role of BMP4 in mammalian embryonic haematopoiesis, cells were isolated from murine AGM and two popu...

متن کامل

BMP signalling regulates the pre-implantation development of extra-embryonic cell lineages in the mouse embryo

Pre-implantation development requires the specification and organization of embryonic and extra-embryonic lineages. The separation of these lineages takes place when asymmetric divisions generate inside and outside cells that differ in polarity, position and fate. Here we assess the global transcriptional identities of these precursor cells to gain insight into the molecular mechanisms regulati...

متن کامل

Outside-in integrin signalling regulates haematopoietic stem cell function via Periostin-Itgav axis

Integrins play an important role in haematopoietic stem cell (HSC) maintenance in the bone marrow niche. Here, we demonstrate that Periostin (Postn) via interaction with Integrin-αv (Itgav) regulates HSC proliferation. Systemic deletion of Postn results in peripheral blood (PB) anaemia, myelomonocytosis and lymphopenia, while the number of phenotypic HSCs increases in the bone marrow. Postn-/- ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015